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ABSTRACT 

The purpose of this paper is to analyze bar rolling process by means of three rolls 

planetary mill with a three-dimensional elastic-plastic finite element model. The problems 

can be solved with the aid of finite element program MARC by adopting the large 

deformation - large strain theory with the updated lagrangian formulation (ULF) and 

considering the contact problem between the rigid three rolls and the deformable bar billet. In 

addition, a remeshing procedure was adopted to improve the unexpected run time error of 

turning element inside out. Furthermore, a new subdivided element model of the divided 

layers was created, and two different kinds of deformable bar billet were used to simulate the 

process. The numerical results obtained, such as equivalent von-mises stress and plastic strain 

distribution, rolling force, rolling speed of the entrance and exit plane, etc, are very useful in 

designing the rolling process of three roll planetary mill. 

INTRODUCTION 

The three-roll planetary mill is a high-reduction machine with one pass, which is the most 

effective method for a high reduction rolling process than other conventional–type rolling 

process [1]. 

The mechanism of three-roll planetary mill is carried out in the following manner. The 

rolls are driven by a main drive planetary gear system and a superposed drive gear system   
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as shown in Fig.1. The superposed drive gear system will be driven additionally to eliminate 

any slight rotation of the outlet material. The axis of the roll can be adjusted to form an offset 

angle (α) and inclined angle (β), as shown in Fig.1 and Fig.2, respectively, the axes of three 

conical rolls are arranged at an angle of 120° in relation to one another, which rotate around 

the deformable bar billet. In general, the surface of rolls is composed of two parts, one is the 

reduction zone with a tapered cone, and the other is the smoothing zone with a smaller 

tapered cone and sphere fillet at the corner as shown in Fig.3. The round billets are conveyed 

through a supporting pipe located in the center of the three-roll mill by a back pushing rod 

unit, until it makes contact with the rolls in the pass and then rolled out. Various 

cross-sectional area of the product can be easily obtained by simply adjusting the axes of the 

three rolls. The three roll planetary mill is particular suited for making round billets. An 

important advantage of the three-roll mill is that during the process the operating temperature 

of the deformable bar billet is almost under an isothermal state. 

A plasticine model mill simulated by means of rigid-plastic finite element method with 

the assumption of axis-symmetric model (approximately equivalent three dimensional model) 

of RPFEM by T. Noma, et al, [2]. Some useful results of three rolls planetary mill have been 

investigated by experiments with plasticine [3]. But it is very difficult to make a complete 

analysis for a whole simulation of the rolling process with a three dimensional element model. 

When a three-dimensional element model is used, it will take a large amount of computing 

time [4-6]. A model with 640 element and 1025 nodes having a steady state simulation will 

took 175 hours of CPU time on a vax-11/750,with about 2600 iteration [5]. This paper 

simplifies the analysis by ignoring the effect of the rotation of the sun gear during the rolling 

process. That is, the axis of the three roll rotates with its axis only as a rough prediction of 

these high reduction process of three-roll planetary mill.  
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Fig.1. Schematic diagram of the three roll planetary 

mill 

 

 

Fig.2. End view of the three roll planetary mill 

 

The objective of this paper is to develop the mesh system inside the deformable bar billet 

and simulate the stress and strain distributions of the billet at the roll-gap by the finite 

element method with an elastic-plastic model. With a finite element package MARC [7-9], 

this research adopts a three-dimensional brick element model to simulate the three-roll 

planetary high reduction process. After numerical simulation, the bearing force of the roll, 

and the axial velocity of inlet and outlet in the steady state were calculated. 

 

THE UPDATED LAGRANGE PROCEDURE 

 

During metal forming process, the workpiece undergoes large plastic deformations and 

rotations. It is necessary to consider Geometric non-linearity, material non-linearity and 

constitutive non-linearity in the large strain plastic problem [10,11]. Based on the Truesdell 

rate of cauchy stress and the updated lagrangian formulation, a deformed continum can be   

described by a deformed configuration, and the rate of virtual work was derived as the 

following:  
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Where 
T

ij

•

σ  is the Truesdell rate of cauchy stress, and iu is the displacement field of the 

spatial particle, and ix  is the spatial position vector of a particle described as deformed 

coordinate configurations, and iv  is the velocity field of the spatial particle, and 
•

iq  is the 

rate of distributed load per unit volume in the deformed situation, and it
•

 is the rate of 

boundary (surface) load, the integration was carried out over the current volume and surface.  

In this equation, the Truesdell rate of cauchy stress (
T

ij

•

σ ) shows the close relationship with 

the usual rate of cauchy stress ( ij

•

σ ) by: 
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From [9] the constitutive equations for elastic-plastic materials is postulated in the form  

T

ij

•

σ = klijkl Dl                                              (3) 

where the deformation rate is defined by 
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, and the moduli ijkll  is 

not equal to the classical elastic-plastic moduli pe

ijklL
−  the basis of the small-strain theory. The 

relation between the large strain moduli ijkll  and the classical elastic-plastic moduli pe

ijklL
−  

can be generalized as follows:   

klijjlikkjil

pe

ijklijkl Ll δσδσσδ −−−= −                            (4) 

However, the deformations are (near) incompressible, so the last term can be neglected 

and the constitutive equations remain symmetric. 
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*Treatment of contact 

The initial contact position of the problem can be computed by the means of halving the 

interval (bisection method). In Fig.3, contact problem between the rigid body and deformable 

bar billet can be used as solver constraints in MARC [9]. 

The non-penetration constraint is defined by 

DnuA ≤•
rr

                             (5)   

Where Au
r

 is the displacement vector of node A of 

the deformable bar billet, and n
r

 is the unit normal 

vector of rigid die, and D is the distance between the 

rigid die and deformable bar billet.  

Whenever contact between a deformable body and a 

rigid body is detected, imposed displacement are 

automatically created. A check is made on all free boundary nodes to determine whether the 

newly calculated displacement increments put them inside any surface. If the increment is 

reduced, the current increment is considered split into two and the remainders are executed 

next.  

 

* Treatment of friction 

Friction has been traditionally modeled in the metal forming field in two ways: a 

coulomb type, and a constant shear type [9]. In this paper coulomb friction was used in 

the bar rolling process, which considers that there is a tangential force applied along an 

interface described by the equation:  

tff nt

rr
µ−≤                                              (6) 

where tf
r

 is the tangential force being applied, and µ  is the coefficient of friction, and 

Fig.3 definition of contact 

problem 
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nf  is the normal reaction, and t
r

 is tangential unit vector in the direction of the velocity 

defined as follows: 

r

r

v

v
t r

r
r

=                                                 (7) 

where rv
r

 is the relative slide velocity of the contacted node. 

Quite often in metal forming, neutral lines develop, which makes friction equation to an 

implicit step function of the displacement increment vector du. 

A step function usually causes numerical problems. Therefore, a smoothing procedure is 

expected. The following one was made 

t
C

v
ff

r

nt

r
r

r
)(tan

2 1−−=
π

µ                                 (8) 

The constant C smoothen more or less the step function. Typically C should be one or two 

orders of magnitude lower than the average sliding velocity in the contact region. Equations 

automatically reproduce “sticking” region by allowing variable very small slip. It also avoids 

the logical steps of making the distinction between sticking and sliding. 

 

* Treatment of remeshing 

The element mesh of the deformable bar billet under the three-roll planetary rolling 

process, usually occurred a seriously distortion, even they might even cause elements turning 

inside out. To deal with this problem, a treatment of element mesh remeshing was adopted in 

this study [12]. To avoid the remeshed shape of outer circumferential of billet, it is necessary 

to highlight the effect of the scheme on the circumferential of the bar billet. In this paper, the 

remeshing increment was implemented once every 20 usual increments. The nodal points 

only in the interior of the bar billet showed a new position vector and other relative variables 

by averaging the position field variables. 

 



 7 

RESULTS AND DISCUSSION 

 

This research adopted two kinds of size of the billet to simulate the rolling processes, one 

is shown in Fig.4 for case A1 to A2, and the other is shown in Fig.5 for case A3 to A5. The 

numbering system of the bar billet of the elements and nodes are shown in Fig.6a, and Fig.6b. 

The material used in the analysis is stainless steel 316. It was assumed that the rolling process 

was conducted isothermally at 1100℃.The stress-strain relationship of stainless steel 316 at 

this temperature is obtained by compressing test and simply modeled by adopting a bilinear 

function . As shown in Fig.4 and Fig.5, the initial positions of the section No.1 for A1 to A5 

are all the same.  

 

Fig.4. Deformable bar billet for case A1, A2 

 

 

Fig.5. Deformable bar billet for case A3, A4, A5 
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 Fig.6a. Numbering system of elements 

 

Fig.6b. Numbering system of nodes 

 
The profile of the roll and initial contact configuration is shown in Fig.7, and Fig.8. The 

simulation of the three roll planetary is composed of a deformable bar billet, a back pushing 

plate to push the bar billet from left to right, a rigid supporting pipe to support the bar billet, 

and three rigid rolls to roll the deformable bar billet. Surface of rolls is used as a rigid body, 

on which are 20 divided along axial and 36 divided along circumferential of the cone of the 

roll. 

 

Fig.7. Initial contact condition and the profile of the 

roll  

 

Fig.8. Configuration of three roll planetary mill 

 

 The material property are described in detail as follows:  
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Material: stainless steel 316 under circumference of 1100℃ 

Strain hardening rate (H): 116MPa (ε<0.50) and 10MPa (ε≧0.50)  

Young’s modulus (E): 79MPa 

Yielding stress: 100MPa 

Poisson’s ratio: 0.33 

Coefficient of friction between the roll and the deformable bar billet: 0.5 ~ 0.7 

Inclined angle (b): 50° 

Offset angle (a): 7°  

Every three-dimensional brick element bears a total 24 degrees of freedom and with 

three degrees of freedom per node. The element properties of the deformable bar billet for 

simulation in this study was tabulated as follows: 

Table.1. The detailed description of the simulated case A1~A5   

 Element property Angular velocity 

of the roll 

Axial increment of 

Back pushing plate 

Axial 

increment of   

supporting 

pipe  

Coefficient 

of friction  

A1 0.5 

A2 

Node=2184 

Element =1656 

Layer=23 

Section=24  

0.6 

A3 0.5 

A4 0.6 

A5 

Node=1456 

Element =1080 

Layer=15 

Section=16 

0.01rad/unit 

time step, with 

one remeshing 

increment after 

every each 20 

unit time step 

increment 

 

1.0mm/unit time 

step only for initial 

state to increment 

No.20 

Departed 

from the 

section No.1 

after    

20’s unit 

time step 

increment 0.7 

 

In the present study, it was necessary to push the deformable bar billet to the stage as 

shown in Fig.7. When the friction force was large enough, the roll will pull the deformable 

bar billet in. For the firstly initial 20 unit time increments, the back pushing velocity is 
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simulated by setting (1.0mm/unit time increment), and the angular velocity of roll was rotated 

by setting (0.01rad/unit time increment), and the supporting pipe will depart from the 

leftmost section at the end of increment No. 20, after that the process is simulated merely by 

rotating the rolls only. 

From the simulated results, it is shown in Fig.9, the pushing plate is no longer contacting 

the end of the deformable bar billet at increment No.175 for case A1. The force of back 

pushing plate from an initial state to an increment 250 for each case A1 to A5 is shown in 

Fig.10. Accordingly, one can realize that the case A5 has a high value of force of 3.0E+06 N 

with a higher friction coefficient 0.7, and the plate departed from the leftmost section faster 

than other case also. Generally, it is the coefficient of friction plays an important roles, the 

billet will leave faster from the back pushing plate as the friction is larger. 

 

Fig.9. The rolling force of case A1 Fig.10. The rolling force of case A1~A5 

 

Grid distortion of the front views from unit time increment No.100 to 800 of the 

deformable bar billet are shown in Fig 11~18. It is found that in the case A1 the equivalent 

von-mises stress and plastic strain at increment No.700 are 237MPa and 9.062. When the 

layer No.12 of case A2 is rolled out, the computed equivalent von-mises stress and plastic 

strain of the bar illustrated in Fig.19 and Fig.20, reach to 309MPa and 15.61, respectively. In 

 force of back pushing plate for case A1
0.0E+005.0E+051.0E+061.5E+062.0E+062.5E+06

1 26 51 76 101 126 151 176 201 226increment (before 250)pushing force (N)
 force of back pushing plate for case A1 to A5case A1     case A2      case A3     case A4    case A5

0.0E+005.0E+051.0E+061.5E+062.0E+062.5E+063.0E+063.5E+06
1 increment(before 250 for each case)pushing force (N)
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fact, the deformable bar billet undergoes an area reduction more than 700% as the original 

diameter of the bar is 200mm and final reduced diameter is 75mm.  

 

 

Fig.11. The equivalent von mises stress for case A1 

 

Fig.12. The Equivalent plastic strain for case A1 

 

Fig.13 The equivalent von mises stress for case A1. 

 

Fig.14. The Equivalent plastic strain for case A1 
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Fig.15. The equivalent von mises stress for case A1 

 

 Fig.16. The Equivalent plastic strain for case A1 

Fig.17. The equivalent von mises stress for case A1 

 

Fig.18. The Equivalent plastic strain for case A1 

     

 

Fig.19. The equivalent von mises stress for case A2 

 

Fig.20. The Equivalent plastic strain for case A2 
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It can be easily determined by checking that the fluctuated bearing force of roll is 

circulating between increment No.400 and No.700 (Fig.21). It seems that the deformation 

reached steady state at unit time increment between 400 to 700 (Fig.22), and that it becomes 

non-steady beyond the increment 850 because the inlet element mesh is very large and still in 

an elastic state. Note that the rolling force fluctuated in the process because some of the 

circumferential nodes are contacted with and/or departed from the rolls. The bearing force 

components of Y and Z direction mean the reduction force required to reduce the section area, 

and X direction stand for the velocity of deformable bar billet driven by the rolls. The total 

and component of historic bearing force of roll for case A2 and A3 are shown in Fig.23, 

Fig.24, and Fig.25, and Fig.26, respectively. Table.2 listed the fluctuated force of rolls at 

steady state for cases A1 to A3. 

Table.2. Comparison of the fluctuated force of roll at steady state for case A1 to A3 

Case Increment F (KN) FX (KN) FY (KN) FZ (KN) 

A1(μ=0.50) 400~700 2300~2650 150~220 2100~2400 800~1000 

A2(μ=0.60) 400~700 2450~2900 200~300 2300~2700 1000~1200 

A3(μ=0.50) 400~700 2600~3150 200~300 2400~2990 1000~1280 

 

 

Fig.21. The bearing force of roll 

 

Fig.22.The bearing force components of roll 
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Fig.23. The bearing force of roll 

 

Fig.24. The bearing force components of roll 

 

 

Fig.25. The bearing force of roll 

 

Fig.26. The bearing force components of roll 

 

Figure 27 demonstrated the axial velocity of nodal point at inlet and outlet along global 

coordinates. When a steady state occurred, the axial velocities of the inlet and outlet are 

0.09mm and 0.53mm per unit time, and its ratio is converging to 6.0 approximately, as shown 

in Fig.28. The average mean diameter of the circumferential nodes on each section from 

initial state to unit time increment No.800 is shown in Fig.29. When the figure was partly 

enlarged as shown in Fig.30, it can be seen the bulge effects on the inlet near the deformation 

zone, in other words the bulge amount are large at increment No.200 to 400 than that at 

increment No.600 to 800.  
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Fig.27. The axial velocity of the inlet and outlet  

01234
567

0 100 200 300 400 500 600 700increment(0.01rad/unit time)velocity (mm/unit tim
e) and velocity ratio

velocity ratio of section No.1 and No.24(case:A1)section No.1(case:A1)section No.24(case:A1)
 

Fig.28. The velocity ratio of inlet and outlet 

 average diameter of case: A1
050100150200250

1 3 5 7 9 11 13 15 17 19 21 23section No.of cylindrical baraverage diameter (m
m) initialstateNo.100No.200No.300

Fig.29. The average mean diameter of each section Fig.30. The enlarged diagram of left part of Fig.29 

 

Fig. 31 illustrates the axial nodal position of rightmost section of case A1 to A5. And Fig 

32 shows the axial nodal velocity of rightmost section of case A1 to A5. In shorts, the greater 

the friction value is, the larger the velocity produced is. 

velocity of section No.1 and No.24
00.10.20.30.40.50.60.7

0 100 200 300 400 500 600 700increment(0.01rad/unit time)axial velocity (mm/u
nit time) section No.1(Case:A1) section No.24(Case:1)

average diamater of case:A1
160170180190200210

1 2 3 4 5 6 7 8 9section No.diameter of the the s
ection initial stateNo.100No.200No.300No.400No.600No.800
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displacement of node on rightmost  section

4005006007008009001000
0 100 200 300 400 500 600 700history of increment(unit time)position of axial no

de case:A1 case:A2 case:A3case:A4 case:A5

 

Fig.31.The axial position of axial node on rightmost 

section. 

velocity of node No.2094 & No.1366
00.10.20.30.40.50.60.70.80.9

0 100 200 300 400 500 600 700history of incrementvelocity (mm/unit tim
e) case:A1 case:A2 case:A3case:A4 case:A5

 

Fig.32. Comparison of the velocity of axial node on 

rightmost section. 

 

CONCLUSION 

 

This research proved the possibility of the new subdivided element for the simulation of 

three roll planetary rolling process, it is also suggested that the circumferential nodal point 

and the section element subdivided should posses a symmetrical relation with the numbers of 

roll. With the amounts of deformation occurring in the process, the remesh scheme should be 

added for further implementing. The total computation required on a CONVEX C3840 for 

each case A1~A2 and A3~A5 are about 5000 and 3000 CPU minutes, respectively. For the 

sake of saving computing time, from the simulated results, a smaller degree of freedom of 

problem should be adopted. In the present analysis the rolls are rotated with its axe only, but 

the simulated stress and strain distribution, bearing force of rolls, velocity ratio of the inlet 

and outlet are good for the rough predict of the first time.  
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